

The role of experiments and data reduction techniques in the tuning of different transition models

D. Simoni

DEVE Meccanica Energetica Gestionale Trasporti

Aerodynamics and Turbomachinery Laboratory UNIVERSITY OF GENOVA

Contents

- *Motivations* (what we are doing and why)
- Experimental vs numerical data (pro and cons)
- Test case and BCs (usability of the test case)
- **Example of possible learning procedures** (promoting sparsity)
- Results and tuned models (example of LKE, gamma-Re, and algebraic models)

• *Hi-fidelity* simulations on *real applications* allow nowadays an *unprecedent view* of flow details

• *Hi-fidelity* simulations on *real applications* allow nowadays an *unprecedent view* of flow details

They are today still **too costly** to be employed at **industrial level** to **sample** large region of **design space** variation

• *Hi-fidelity* simulations on *real applications* allow nowadays an *unprecedent view* of flow details

They are today still **too costly** to be employed at **industrial level** to **sample** large region of **design space** variation

RANS equations, tuned with **hi-fidelity or high accuracy experimental** data, are the **best practice** actually used in industry to optimize aerodynamic components

• *Hi-fidelity* simulations on *real applications* allow nowadays an *unprecedent view* of flow details

- The main target of the RANS approach is to describe the effects of the turbulence on the flow motion, without directly solving the Navier-Stokes equations, in order to save computational time and cost.
- This leads to obtain the **RANS** (Reynolds Average Navier-Stokes) equations:

$$\frac{D\overline{U}}{Dt} = -\frac{1}{\rho}\nabla\overline{p} + \nu\nabla^{2}\overline{U} - \nabla([\tau]) \qquad \text{where: } \tau_{i,j} = \overline{u'_{i}u'_{j}}$$

where: \overline{U} is the average value describing the mean flow. u' is the fluctuation describing the turbulent motion.

The term ($[\tau]$) is known as the **Reynolds stress tensor** and requires **modelling strategies to close** the problem

The most common and simplest tensor modeling strategies are **based on the Boussinesq's hypothesis,** that introduces an **eddy viscosity** v_t providing a linear relationship between the stress and the strain tensor

$$-\overline{u_i'u_j'} =
u_t \left(rac{\partial \overline{u_i}}{\partial x_j} + rac{\partial \overline{u_j}}{\partial x_i}
ight) + \left[-rac{2}{3}\delta_{ij}k
ight] \qquad
u_t = f(k,\epsilon) = C_\mu rac{k^2}{\epsilon} = C_\mu \sqrt{k}rac{k^{3/2}}{\epsilon}$$

This linear relation implies that principal axes of strain and modelled stress tensor will be aligned (which is unphysical, especially during transition), thus **non-linear models** account for of **tensor expansion of strain-rate and rotation**:

$$-\overline{u_{i}'u_{j}'} = \nu_{t}S_{ij} + \nu_{t}'S_{ij}\Omega_{ij} + \nu_{t}''S_{ij}S_{ij}^{T} + \nu_{t}'''S_{ij}\Omega_{ij}S_{ij}^{T} + \dots$$

$$(\nu_t, \nu_t', \nu_t'' \dots) = f(I_1, I_2, K, \varepsilon)$$

Pope, Stephen B. "A more general effective-viscosity hypothesis." *Journal of Fluid Mechanics* 72.2 (1975): 331-340. Pope, Stephen B. *Turbulent flows*. Cambridge university press, 2000.

The most common and simplest tensor modeling strategies are **based on the Boussinesq's hypothesis,** that introduces an **eddy viscosity** v_t providing a linear relationship between the stress and the strain tensor

$$-\overline{u_i'u_j'} =
u_t \left(rac{\partial \overline{u_i}}{\partial x_j} + rac{\partial \overline{u_j}}{\partial x_i}
ight) + \left[-rac{2}{3}\delta_{ij}k
ight] \qquad
u_t = f(k,\epsilon) = C_\mu rac{k^2}{\epsilon} = C_\mu \sqrt{k}rac{k^{3/2}}{\epsilon}$$

This linear relation implies that principal axes of strain and modelled stress tensor will be aligned (which is unphysical, especially during transition), thus **non-linear models** account for of **tensor expansion of strain-rate and rotation**:

$$-\overline{u_{i}'u_{j}'} = \nu_{t}S_{ij} + \nu_{t}'S_{ij}\Omega_{ij} + \nu_{t}''S_{ij}S_{ij}^{T} + \nu_{t}'''S_{ij}\Omega_{ij}S_{ij}^{T} + \dots$$

 $(v_t, v'_t, v''_t, \dots) = f(I_1, I_2, K, \varepsilon, features)$

Pope, Stephen B. "A more general effective-viscosity hypothesis." *Journal of Fluid Mechanics* 72.2 (1975): 331-340. Pope, Stephen B. *Turbulent flows*. Cambridge university press, 2000.

Irrespective of the constitutive law for the modelling of the stress tensor (i.e. linear or not linear)
 two additional differential equations, one for the turbulent kinetic energy and the other for
 the dissipation term ε are fundamental ingredient of common RANS solvers:

$$\begin{cases} \frac{D\overline{U}}{Dt} = -\frac{1}{\rho} \nabla \left(\overline{p} + \frac{2}{3}K\right) + (\nu + \nu_T) \nabla^2 \overline{U} \\ \frac{DK}{Dt} = P_K + D_K - \varepsilon \\ \frac{D\varepsilon}{Dt} = P_\varepsilon + D_\varepsilon - \varepsilon_\varepsilon \end{cases} \qquad \begin{array}{l} P \text{ indication of } P \text{ of } P \text{ indication of } P \text{ ind$$

P indicates energy production, D diffusion and ε dissipation of the related quantity

Irrespective of the constitutive law for the modelling of the stress tensor (i.e. linear or not linear)
 two additional differential equations, one for the turbulent kinetic energy and the other for
 the dissipation term ε are fundamental ingredient of common RANS solvers:

$$\begin{cases} \frac{D\overline{U}}{Dt} = -\frac{1}{\rho} \nabla \left(\overline{p} + \frac{2}{3} K \right) + (\nu + \nu_T) \nabla^2 \overline{U} \\ \frac{DK}{Dt} = \gamma P_K + D_K - \varepsilon \\ \frac{D\varepsilon}{Dt} = P_\varepsilon + D_\varepsilon - \varepsilon_\varepsilon \end{cases} \qquad P \text{ indicates energy production, D diffusion and } \varepsilon \\ P \text{ indicates energy production, D diffusion and } \varepsilon \\ \text{dissipation of the related quantity} \end{cases}$$

Additionally, **the eddy viscosity (or the production of K)** should be **"activated/deactivated"** by means of ad hoc tuned **intermittency function (\gamma)**, acting like a **"transition model"** avoiding the excessive diffusion of the turbulence

Generally, also the *intermittency function* is described by algebraic or partial differential equations requiring in both cases fine tuning of relative ingredients

• **Other transition models** have been developed with its own coefficients and blending functions to be tuned

Other transition models have been developed with its own coefficients and blending functions to be tuned

Generally, the terms of the equations **need to be tuned** by means of **big data sets**,

Other transition models have been developed with its own coefficients and blending functions to be tuned

Generally, the terms of the equations **need to be tuned** by means of **big data sets**, involving the main **flow features** affecting the transition, like for example the **Reynolds number** (Re), the free-stream **turbulence level** (Tu) and additional ones (i.e. **vorticity, turbulent Re number, strain and rotation tensor invariants....**).

Experimental vs numerical data

Hi-fi data allows:

- high spatial and temporal resolutions
- detail of the full domain and 3D results

They exibit limited:

- number of snapshot stored
- conditions tested due to numerical cost

Experimental vs numerical data

Hi-fi data allows:

- high spatial and temporal resolutions
- detail of the full domain and 3D results

They exibit limited:

- number of snapshot stored
- conditions tested due to numerical cost

Experiments data allows:

- Quick variation of flow condistions
- Large number of stored shapshots

They exibit limited:

- Spatial resolution
- Limited portion of the domain investigated

Experimental vs numerical data

Hi-fi data allows:

- high spatial and temporal resolutions
- detail of the full domain and 3D results

They exibit limited:

- number of snapshot stored
- conditions tested due to numerical cost

Experiments data allows:

- Quick variation of flow condistions
- Large number of stored shapshots

They exibit limited:

- Spatial resolution and generally 2D analysis
- Limited portion of the domain investigated

- FLAT PLATE
- Elliptic L.E. (4:1)
- L = 300 mm
- W = 300 mm

HW measurements to characterize the incoming flow

PIC measurements with a doble camera (cam1, cam2) layout to obtain high spatial resolution and large field of view

Adjustable bottom endwall

- Flat plate installed within adjustable endwalls to control the pressure gradient. Upstream, different turbulence generating grids are adopted to test different free-stream turbulence intensity.
 - Boundary layer transition is experimentally characterized for variable Reynolds numbers, free-stream turbulence intensities and adverse pressure gradients.

Adjustable bottom endwall

- Flat plate installed within adjustable endwalls to control the pressure gradient. Upstream, different turbulence generating grids are adopted to test different free-stream turbulence intensity.
 - Boundary layer transition is experimentally characterized for variable Reynolds numbers, free-stream turbulence intensities and adverse pressure gradients.

Adjustable bottom endwall

- Flat plate installed within adjustable endwalls to control the pressure gradient. Upstream, different turbulence generating grids are adopted to test different free-stream turbulence intensity.
 - Boundary layer transition is experimentally characterized for variable Reynolds numbers, free-stream turbulence intensities and adverse pressure gradients.

 Turbulence level and turbulence decay rate (for properly set the BCs in CFD simulations are available)

Measuring Techniques

Fast-Response Particle Image Velocimetry (TR-PIV) is used for the measurements on the plate

LASER SYSTEM:

- Double cavity ND: YLF pulsed laser LITRON-LDY300
- Energy 30 mJ per pulse at 527 nm

DOUBLE CAMERA:

- Dantec High-Sense digital camera
- 1280x1024 pixels cooled CCD matrix
- Pixel dimension 6.7 µm
- 12bit quantization
- Maximum frame rate in double frame mode: 3 kHz

POST PROCESSING

- 16x16 cross-correlation (50% overlap) and Gaussian sub-pixel interpolation
- Spatial resolution = 0.41mm

AQUIRED DATA

- > 0.2 < x/L < 1 (throat to end of the plate)
- > 6000 PIV snapshot per flow condition
- Two acquisition frequencies: 0.3kHz and 1kHz

ESTIMATED ACCURACY

- ➤ ±3% for the velocity in the free-stream
- ➤ ±6% for the velocity in the BL region
- ► ±10-15% for BL integral parameters

Database – first version acquired in the 2019

48 combination of flow conditions tested:

- ➢ Re = 70000, 150000, 220000
 - ► Tu = 1.5%, 2.5%, 3.5%, 5%
- \succ α = 12°, 9°, 5°, 1°

Simoni, D., et al. An accurate database on laminar-to-turbulent transition in variable pressure gradient flows. International Journal of Heat and Fluid Flow, 2019, 77: 84-97.

Database – first version acquired in the 2019

48 combination of flow conditions tested:

- Re = 70000, 150000, 220000
- Tu = 1.5%, 2.5%, 3.5%, 5%

The range of parameter variation allows switching the transition process from a **bypass** to **separation-induced type**

Simoni, D., et al. An accurate database on laminar-to-turbulent transition in variable pressure gradient flows. International Journal of Heat and Fluid Flow, 2019, 77: 84-97.

PIV statistics: effects of the Reynolds number

Streamwise velocity

 LSBs become shorter and thinner with increasing the Reynolds number and the BL thickness at separation significantly reduces.

PIV statistics: effects of the Tu level

Streamwise velocity

 LSBs become shorter and thinner with increasing the Tu level while BL thickness at separation is unaffected by free-stream turbulence.

PIV statistics: effects of the APG

Streamwise velocity

• LSBs become longer and thinner with reducing the APG and separation moves downstream.

Database – extended version 2022

Additional 90 flow conditions acquired in the low Reynolds number region:

- 15000 < Re < 80000
- ➤ Tu = 1.5%, 2.5%, 3.5%
- \succ $\alpha = 12^{\circ}, 9^{\circ}, 7^{\circ}$

Dellacasagrande, M., et al. "A data-driven analysis of short and long laminar separation bubbles." *Journal of Fluid Mechanics* 976 (2023)

Database – extended version 2022

Additional 90 flow conditions acquired in the low Reynolds number region:

- > 15000 < Re < 80000
- ➤ Tu = 1.5%, 2.5%, 3.5%

$$\sim \alpha = 12^{\circ}, 9^{\circ}, 7^{\circ}$$

In the new database the flow **Re number** has been **finely reduced** to identify the **bursting process** of the laminar separation bubble, thus allowing to study both **short and long** separation bubbles

Dellacasagrande, M., et al. "A data-driven analysis of short and long laminar separation bubbles." *Journal of Fluid Mechanics* 976 (2023)

Reynolds number variation

Reynolds number variation

New Database

Reynolds number variation

We can clearly **capture** the **abrupt change** in the **bubble length** reducing the Re number **under the critical threshold**

New Database

Reynolds number variation

Different dynamics lead to transition in the short (i.e. due to **KH instability**) and long (due to **absolute instability**) bubble type

Daniele Simoni

Università di **Genova**

Example of possible learning procedures

Neural Networks does not offer the possibility to highlight **weight of model ingredient** and their relation to flow physics

We prefer to adopt **sparsity promoting** regression **tools to highlight flow features** mainly involved in the process

$$v_t \text{ or } v', v'', v''' = w_1 features_1 + w_2 features_2 + \dots + w_{nm} features_n features_m$$

Learning Procedure for tuning

Elastic Net

- Elastic Net is an advanced technique for model learning, proposed to improve Ordinary Least Square methods.
- In a common regression problem the target of the Elastic Net is finding the model coefficients β
 minimizing the Euclidean norm of the residuals, subject to both l₁ and l₂ norm constrains on
 the coefficients.

$$\widehat{\boldsymbol{\beta}} = \arg_{\beta} \min[|\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}|^2 + \lambda_1 |\boldsymbol{\beta}| + \lambda_2 |\boldsymbol{\beta}|^2]$$

where:

- $[Y]_{NX1}$ is the targeting function (N observations)
- $[X]_{NXM}$ is the Vandermonde matrix (N observations, M predictor functions)
- $[\boldsymbol{\beta}]_{MX1}$ is the model coefficients vector
- λ_1 and λ_2 are the penalization factors

Learning Procedure for tuning

Lasso: matrix formulation

Learning Procedure for tuning

Lasso: matrix formulation

Sparse Bayesian Learning is used to obtain sparse models from data. Given a set of N samples, the observable t (i.e., the **anisotropy tensor** a_{ij}) is modelled as a linear combination of predictors C(x) and coefficients w plus an additional noise ε :

 $\boldsymbol{t} = \boldsymbol{C}(\boldsymbol{x}) \boldsymbol{w} + \boldsymbol{\varepsilon}$

Regression problem is approached in the **Bayesian framework**, where a **Gaussian probability distribution is assigned to the observations**, given the model:

$$p(\boldsymbol{t}|\boldsymbol{w},\sigma_n) = N(\boldsymbol{t}; \boldsymbol{C}\boldsymbol{w},\sigma_n^2\boldsymbol{I}) = (2\pi\sigma_n^2)^{-\frac{N}{2}} \exp\left(-\frac{1}{2\sigma_n^2}||\boldsymbol{t}-\boldsymbol{C}\boldsymbol{w}||^2\right)$$

Sparse Bayesian Learning is used to obtain sparse models from data. Given a set of N samples, the observable t (i.e., the **anisotropy tensor** a_{ij}) is modelled as a linear combination of predictors C(x) and coefficients w plus an additional noise ε :

$$\boldsymbol{t} = \boldsymbol{C}(\boldsymbol{x}) \boldsymbol{w} + \boldsymbol{\varepsilon}$$

Regression problem is approached in the **Bayesian framework**, where a **Gaussian probability distribution is assigned to the observations**, given the model:

$$p(\boldsymbol{t}|\boldsymbol{w},\sigma_n) = N(\boldsymbol{t}; \boldsymbol{C}\boldsymbol{w},\sigma_n^2\boldsymbol{I}) = (2\pi\sigma_n^2)^{-\frac{N}{2}} \exp\left(-\frac{1}{2\sigma_n^2}||\boldsymbol{t}-\boldsymbol{C}\boldsymbol{w}||^2\right)$$

Sparsity is promoted by two hierarchical prior assumptions:

A normal probability distribution with zero mean and adjustable dispersions α_i is assumed for the model coefficients:

 $p(\boldsymbol{w}|\boldsymbol{\alpha}) = N(\boldsymbol{w}; 0, \boldsymbol{A}^{-1}), \quad \boldsymbol{A} = diag(\boldsymbol{\alpha})$

> The dispersions α_i are assumed to follow a Laplace probability distribution:

$$p(\alpha) = \prod_{i} \frac{\lambda}{2} exp(-\frac{\lambda}{2\alpha_i})$$

Sparse Bayesian Learning aims at defining the **model coefficients/hyperparameters** $\{w, \alpha, \sigma_n^2\}$ allowing the definition of **parsimonious models.** To this end, the maximum of **posterior joint probability** $p(w, \alpha, \sigma_n | t)$ **is searched**, following the method proposed in [1]:

The maximum of $p(w|t, \alpha, \sigma_n)$, i.e., the posterior distribution of the coefficients, provides the **best** value of w given α and σ_n :

The probability for $p(\alpha, \sigma_n | t)$ (multi-dimensional Dirac function) leads to the definition of the **marginal likelihood** L_{II} [2] as the cost function used for setting α and σ_n :

$$\begin{cases} \boldsymbol{\Sigma} = \left(\boldsymbol{A} + \sigma_n^{-2} \boldsymbol{C}^T \boldsymbol{C}\right)^{-1} \\ \boldsymbol{\mu} = \sigma_n^{-2} \boldsymbol{\Sigma} \boldsymbol{C}^T \boldsymbol{t} \end{cases} \qquad \boldsymbol{\longleftrightarrow} \qquad \begin{cases} \alpha_i^{new} = \frac{1 + \sqrt{1 + 8\lambda(\mu_i^2 + \Sigma_{ii})}}{2(\mu_i^2 + \Sigma_{ii})} \\ (\sigma_n^2)^{new} = \frac{||\boldsymbol{t} - \boldsymbol{C}\boldsymbol{\mu}||^2}{N} \end{cases}$$

The sparsity term λ is finally evaluated by cross-validation (and/or validation with respect to unseen flow cases)

Tipping, Michael E. "Sparse Bayesian learning and the relevance vector machine." *Journal of machine learning research* Jun (2001): 211-244.

Balakrishnan, Suhrid, and David Madigan. "Priors on the variance in sparse Bayesian learning: the demi-Bayesian lasso." (2010): 346-359.

Some examples of retained and skipped terms

Retained terms have a prior distribution with large variance

8 prior distr. 6 4 2 0 -5 0 5

Skipped terms have a prior distribution close to a Dirac function

Retained terms may exhibit low or large variance (i.e. confident level)

Coefficients with small variance are more "sure" than the other

Results and tuned models

≻γ-Reθ model

> LKE (Laminar Kinetic energy) model

> Algebraic models

γ-Re_θ transition model

• The γ -Re_{θ} models involve two additional equations, with respect to a classic K- ε approach:

_A differential equation for the *intermittency function* γ

An algebraic equation for the transition onset position Re{θ}

• The **structure** of the model is:

$$\begin{bmatrix}
\frac{D\overline{U}}{Dt} = -\frac{1}{\rho} \nabla \left(\overline{p} + \frac{2}{3}K\right) + (\nu + \nu_T) \nabla^2 \overline{U} \\
\frac{DK}{Dt} = P_K + D_K - \varepsilon \\
\frac{D\varepsilon}{Dt} = P_\varepsilon + D_\varepsilon - \varepsilon_\varepsilon \\
\frac{D\gamma}{Dt} = P_\gamma + D_\gamma - \varepsilon_\gamma$$
Need to be tuned by empirical correlations.

$$Re_{\theta_st} = f(Tu, \lambda_{\theta})$$

where: the equations are related by means of the **dimensional relationship**: $v_T = C_\mu \frac{K^2}{\epsilon} \gamma$

Data reduction for transition modelling (y-Re₉)

- A procedure for the computation of the intermittency function γ has been implemented based on a coherent structures recognition technique.
- The **Wavelet Transform** has been adopted as **events recognition technique** to detect coherent structures responsible for transition.

Wavelet Transform definition:

$$w(x,s) = \int f(x') \frac{1}{\sqrt{s}} \psi^* \left(\frac{x'-x}{s}\right) dx'$$

Data reduction for transition modelling (y-Re₀)

• The energy spectrum can be computed as:

 Choosing the length scale s
 maximizing the energy, the spatial distribution of the wavelet spectral energy clearly highlights
 vortical structures into the flow.

Data reduction for transition modelling (γ-Re_θ)

Vortices recognition

• Vortices occurring in the BL are **well captured** by the **Wavelet based procedure**

Data reduction for transition modelling (y-Re₉)

Computing the intermittency function γ

• Integrating over the variable y:
$$\tilde{e}(x,\overline{s}) = \int E(x,y,\overline{s})dy$$

Introducing a **counter function** n, considering the sum over all the N_y PIV snapshots .

Università di Genova

Data reduction for transition modelling (y-Re₉)

Intermittency function γ for different flow condition (Re, Tu)

- The **computation of** γ directly provides for every flow condition:
 - > The transition onset location (x_t/L)
 - > The transition end location (x_T/L)
 - > The turbulent spot production rate $(\hat{n}\sigma)$

Empirical correlations for transition (y-Re₀)

- RANS simulations based on γ-Reθ transition models require closure terms providing the transition onset and the spot production rate
- Thanks to the previous observations, empirical correlations can be obtained, using the least square best fitting:
 - > For the transition onset Reynolds number:
 - > For the turbulent spot production rate:

Dellacasagrande, Matteo et al. Correlations for the Prediction of Intermittency and Turbulent Spot Production Rate in Separated Flows. Journal of Turbomachinery, 2019.

Università di **Genova**

Daniele Simoni

September 13, Warsaw, Poland

Results and tuned models

≻γ-Re₀ model

> LKE (Laminar Kinetic energy) model

> Algebraic models

Laminar-Kinetic Energy transition model

• The structure of the LKE model:

$$\begin{cases} \frac{D\overline{U}}{Dt} = -\frac{1}{\rho} \nabla \left(\overline{p} + \frac{2}{3}K\right) + (\nu + \nu_T) \nabla^2 \overline{U} \\ \frac{DK_L}{Dt} = P_{K_L} + D_{K_L} - R - \varepsilon \\ \frac{DK_T}{Dt} = P_{K_T} + D_{K_T} + R - \varepsilon \\ \frac{D\varepsilon}{Dt} = P_{\varepsilon} + D_{\varepsilon} - \varepsilon_{\varepsilon} \end{cases}$$

where the equations are related by means of a **relationship**: $v_T = v_T(K_L, K_T, \varepsilon)$

• Based on the Hussain and Reynolds triple decomposition, KL and KT can be defined as:

$$\frac{D(\frac{1}{2}\overline{\widetilde{u_{i}}\widetilde{u_{i}}})}{Dt} = \dots + (-\overline{\widetilde{u_{i}}\widetilde{u_{i}}})\frac{\partial\overline{U_{i}}}{\partial x_{j}} - \overline{(-\langle\overline{u_{i}'u_{j}'}\rangle)\frac{\partial\overline{u_{i}}}{\partial x_{j}}} - \frac{1}{2Re}\overline{\left(\frac{\partial\widetilde{u_{j}}}{\partial x_{i}} + \frac{\partial\widetilde{u_{i}}}{\partial x_{j}}\right)\left(\frac{\partial\widetilde{u_{j}}}{\partial x_{i}} + \frac{\partial\widetilde{u_{i}}}{\partial x_{j}}\right)}}{\frac{D(\frac{1}{2}\overline{u_{i}'u_{i}'})}{Dt} = \dots + (-\overline{u_{i}'u_{j}'})\frac{\partial\overline{U_{i}}}{\partial x_{j}} + \overline{(-\langle\overline{u_{i}'u_{j}'}\rangle)\frac{\partial\widetilde{u_{i}}}{\partial x_{j}}} - \frac{1}{2Re}\overline{\left(\frac{\partial\overline{u_{j}'}}{\partial x_{i}} + \frac{\partial\overline{u_{i}'}}{\partial x_{j}}\right)\left(\frac{\partial\overline{u_{j}'}}{\partial x_{i}} + \frac{\partial\overline{u_{i}'}}{\partial x_{j}}\right)}}$$

September 13, Warsaw, Poland

Laminar-Kinetic Energy transition model

• The structure of the LKE model:

$$\begin{cases} \frac{D\overline{U}}{Dt} = -\frac{1}{\rho} \nabla \left(\overline{p} + \frac{2}{3}K\right) + (\nu + \nu_T) \nabla^2 \overline{U} \\ \frac{DK_L}{Dt} = P_{K_L} + D_{K_L} - R - \varepsilon \\ \frac{DK_T}{Dt} = P_{K_T} + D_{K_T} + R - \varepsilon \\ \frac{D\varepsilon}{Dt} = P_{\varepsilon} + D_{\varepsilon} - \varepsilon_{\varepsilon} \end{cases}$$

where the equations are related by means of a **relationship**: $v_T = v_T(K_L, K_T, \varepsilon)$

• Based on the Hussain and Reynolds triple decomposition, K_{\perp} and K_{\perp} can be defined as: $u = \overline{U} + \widetilde{u} + u'$

where: \overline{U} is the average value describing the mean flow. \widetilde{u} is the deterministic part of the fluctuations describing the laminar flow u' is the stochastic part of the fluctuations describing the turbulent flow

POD as a tool for scale separation

POD can be adopted to distinguish between laminar (coherent) and turbulent (stochastic) fluctuations

Terms expressed by POD

Exact definition

(from Hussein and Reynolds equations)

Fragment definition from POD

Model definition

Modelling: example of the model for the laminar energy production term.

$$P_{K_L} = f_1 \frac{K_L^2}{\mathbf{e}} \left(\frac{\partial \overline{U}}{\partial x}\right)^2 + f_2 \frac{K_L^2}{\mathbf{e}} \left(\frac{\partial \overline{U}}{\partial y}\right)^2 + f_3 \frac{K_L^2}{\mathbf{e}} \left(\frac{\partial \overline{V}}{\partial x}\right)^2 + f_4 \frac{K_L^2}{\mathbf{e}} \left(\frac{\partial \overline{V}}{\partial y}\right)^2$$

where $f_1 - f_4 = f\{Re, Tu, |S|\}$ are **blending functions** (second order polynomials) of the most influencing parameters affecting transition: the **Reynolds number**, the **free-stream** *turbulence level and the shear invariant*.

Similarly, for the other terms:

Simoni, Daniele et al. Modified formulation of Laminar Kinetic Energy transition models by means of elastic-net of a big experimental database of separated flows. Flow Turbulence and Combustion 105, 671–697 (2020)

Experimental and modelled fragments of the **laminar energy production term** for the reference case: {Re=70000, Tu=1.5%, α =12deg}

 Same tendencies between the spatial distributions of the two terms, high levels of P_{KL} are detected within the separated shear layer and downstream of the bubble maximum displacement, where KH rolls develop

Experimental and modelled fragments of the **turbulent energy production term** for the reference case: {Re=70000, Tu=1.5%, α =12deg}

 Ability of the modeled term to reproduce the spatial distribution in the bubble maximum displacement zone and in the reattaching region where KH rolls breackdown

Experimental and modelled fragments of the **energy transfer term** for the reference case: {Re=70000, Tu=1.5%, α =12deg}

- Transfer term is negligible in the separated shear layer and becomes important around the bubble maximum displacement
- Good mimic between the measured and the modeled terms downstream the bubble maximum displacement
 - Overall, the modeled term reproduces well the measured quantities

Results and tuned models

≻γ-Reθ model

> LKE (Laminar Kinetic energy) model

> Algebraic models

Algebraic transition models

- Algebraic models are based on **non-linear algebraic constitutive laws** linking the stress tensor $[\tau]$ with the strain [S] and rotation $[\Omega]$ tensors,
- Algebraic models are able to consider also the anisotropic character of the turbulence, overcoming the limitations assumed in the Boussinesq's closure form.

$$a_{ij} = \tau_{ij} - \frac{2}{3}k\delta_{ij} = \sum_{n} T_{ij}^{(n)}v_t^{(n)} = v_t'(I_1, I_2)T_{ij}^1 + v_t''(I_1, I_2)T_{ij}^2 + v_t'''(I_1, I_2)T_{ij}^3$$

• For 2-D flows the tensor basis is provided by three elements and related apparent viscosities

$$\begin{cases} T_{ij}^{1} = S_{ij}^{*} \\ T_{ij}^{2} = S_{ik}^{*} \Omega_{kj}^{*} - \Omega_{ik}^{*} S_{kj}^{*} \\ T_{ij}^{3} = S_{ik}^{*} S_{ki}^{*} - \frac{1}{3} \delta_{ij} S_{mn}^{*} S_{mn}^{*} \\ I_{1} = S_{mn}^{*} S_{mn}^{*} \\ I_{2} = \Omega_{mn}^{*} \Omega_{mn}^{*} \end{cases} \begin{bmatrix} S_{ij}^{*} = \frac{1}{2\omega} \left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) \\ \Omega_{ij}^{*} = \frac{1}{2\omega} \left(\frac{\partial U_{i}}{\partial x_{j}} - \frac{\partial U_{j}}{\partial x_{i}} \right) \end{bmatrix}$$

Here the objective is the tuning of the apparent viscosities also including different flow features

Algebraic transition models

• Two independent models have been tuned, one for short and one for long bubbles type

Dellacasagrande, M., et al. "A data-driven analysis of short and long laminar separation bubbles." *Journal of Fluid Mechanics* 976 (2023)

Different models tuned with SBL are evaluated on a Validation Set varying the sparsity promoting term λ :

- Increasing λ, more sparse models are obtained
- A trade-off between accuracy/generalizability is searched

Carlucci A. et al. An Experimental Database for Machine Learning of Algebraic Models in Separated Flows, under review in FTC, 2024

Different models tuned with SBL are evaluated on a Validation Set varying the sparsity promoting term λ :

- Increasing λ, more sparse models are obtained
- A trade-off between accuracy/generalizability is searched

Measured Components

Carlucci A. et al. An Experimental Database for Machine Learning of Algebraic Models in Separated Flows, under review in FTC, 2024

Different models tuned with SBL are evaluated on a **Validation Set** varying the **sparsity promoting term** λ:

- Increasing λ, more sparse models are obtained
- A trade-off between accuracy/generalizability is searched

Measured Components

Carlucci A. et al. An Experimental Database for Machine Learning of Algebraic Models in Separated Flows, under review in FTC, 2024

Different models tuned with SBL are evaluated on a **Validation Set** varying the **sparsity promoting term** λ:

- Increasing λ, more sparse models are obtained
- A trade-off between accuracy/generalizability is searched

Measured Components

Predictor	Tensor	Coefficient	Uncertainty
cost.	T_{ij}^1	-0.068	1.0%
cost.	T_{ij}^2	-1.1	0.092%
$I_{2\Omega}$	T_{ij}^1	-0.42	0.38%
I_{2S^2}	T_{ij}^{1}	-0.1	15%
$I_{2S}^5 I_{2\Omega}^5$	T_{ij}^{1}	-55	0.51%
$I_{2\Omega}$	T_{ij}^2	-0.32	0.056%
I_{2S}^{5}	T_{ij}^2	2.2	0.31%
$I_{2S}^5 I_{2\Omega}^5$	T_{ij}^2	21	0.93%
$I_{2\Omega}$	T_{ii}^3	1.8	0.46%
$I_{2\Omega}^2$	T_{ij}^3	5.1	0.34%

Carlucci A. et al. An Experimental Database for Machine Learning of Algebraic Models in Separated Flows, under review in FTC, 2024

 $\overline{u'^2}$

 p'^2

 $\overline{u'v'}$

Algebraic transition models: weight between models

The final model will be obtained combining both short and long bubbles model

The weighting terms have been tuned, with possible choice of the hyperparameter σ_w

$$w_{SB}(x, \sigma_w) = \frac{g_{SB}(x, \sigma_w)}{g_{SB}(x, \sigma_w) + g_{LB}(x, \sigma_w)}$$
$$w_{SB}(x, \sigma_w) = \frac{g_{SB}(x, \sigma_w)}{g_{SB}(x, \sigma_w) + g_{LB}(x, \sigma_w)}$$
$$g_{SB,LB} = \exp\left(-\frac{1}{2}\frac{\sum_{i=1}^2 \sum_{i=j}^2 (p_{ij}(a_{ij}^{SB,LB} - a_{ij})^2)}{\sigma_w^2}\right)$$

Algebraic transition models: merging the models

Once the **"specialized" models** for **short and long bubbles** are tuned, **an aggregated model (AG)** can be obtained and tested on intermediate flow cases

Measured Components

Modelled Components

Algebraic transition models: merging the models

Adding flow features increases significantly the prediction accuracy

$$\boldsymbol{\tau}_{ij}^{\Delta(AG)} = w_1 \boldsymbol{\tau}_{ij}^{\Delta(short)} + w_2 \boldsymbol{\tau}_{ij}^{\Delta(long)}$$

-
$$\sum_{i} w_{i} = 1$$

 $w = w(flow features, ...)$
 $v_{t}^{\prime...,\prime\prime\prime}(I_{1}, I_{2}, flow features, ...)$

Measured Components

Modelled Components

September 13, Warsaw, Poland

Thank you for your attention

The role of experiments and data reduction techniques in the tuning of different transition models – FMC conference 2024

Principal axes analysis

Separated flow transition case

Strain tensor

Deviatoric part of the stress tensor

• The shear orientation is $\pm 45^{\circ}$ with respect to the wall normal direction.

• The stress principal directions start to incline in correspondence of the bubble maximum displacement.

The role of experiments and data reduction techniques in the tuning of different transition models – FMC conference 2024

Principal axes analysis

By-pass flow transition case

- > Shear stress tensor
- Deviatoric part of the stress tensor

• The shear orientation is $\pm 45^{\circ}$ with respect to the wall normal direction.

• The stress principal directions remain aligned with the streamwise direction. The dominant term driving the by-pass transition is $\overline{u'^2}$ and the process is characterized by a strong anisotropy.

Algebraic transition models

• For example, the Pope's tensorial expansion provides the constitutive law:

 $[\tau] = \nu_T[S] + \nu'_T[S][\Omega] + \nu''_T[S][S]^T + \nu''_T[S][\Omega][S]^T + \cdots$

where practically the sum of higher order tensor elements modifies the principal axes (both rotating and stretching) of the modelled turbulent stress tensor.

- A variant of classic algebraic relations **has been proposed**, involving:
 - > A rotation matrix [R] providing a local re-orientation of the principal axes
 - > A diagonal matrix $[\Delta_v]$ providing the local stretching of the principal axes

 $[\tau] = [X_s][R][\Delta_{\nu}][\Delta_s][R]^T [X_s]^T$

where: $[R] = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ $[\Delta_S] \text{ diagonal matrix of the eigenvalues of the strain tensor}$ $[\Delta_{\nu}] = \begin{bmatrix} \nu_I & 0 \\ 0 & \nu_{II} \end{bmatrix}$ $[X_S] \text{ matrix of the eigenvectors of the strain tensor}$

Lengani, Davide et al. Analysis and Modeling of the Relation Between Shear Rate and Reynolds Stress Tensors in Boundary Layer Transition, Submitted to HFF.

September 13, Warsaw, Poland

A polynomial fitting strategy is used to define a relationship f and f' for the stress eigenvalue $\lambda_{1,\tau}$ and for the displacement angle $\Delta\theta$ in function of known flow properties: the turbulent kinetic energy k, the ℓ_2 norm of the shear tensor |S| and the Reynolds number Re_y .

 $\lambda_{1,\tau} = f(k, |S|, Re_y)$ $\Delta \theta = f'(k, |S|, Re_y)$ where Re_y is based on the wall distance y and the local velocity outside the BL u_{ext} .

• The **relationship** for $\lambda_{1,\tau}$ and $\Delta\theta$ can be included to **model the stress tensor** by means of the previous definition:

$$[\tau_{mod}] = [X_s][R][\Delta_{\tau,mod}][R]^T [X_s]^T$$

with:

$$[R] = \begin{bmatrix} \cos \Delta \theta_{mod} & \sin \Delta \theta_{mod} \\ -\sin \Delta \theta_{mod} & \cos \Delta \theta_{mod} \end{bmatrix} \qquad [\Delta_{\tau,mod}] = \begin{bmatrix} \lambda_{1,\tau} & 0 \\ 0 & -\lambda_{1,\tau} \end{bmatrix}$$

Model validation

The model capability was tested **comparing** the **modeled results** with the **experimental measurements** for two different flow conditions that did not participate to the education of the model.

Model validation

The model capability was tested **comparing** the **modeled results** with the **experimental measurements** for two different flow conditions that did not participate to the education of the model.

 The distributions are well reproduced, always capturing the correct orientation and magnitude of the stress eigenvectors. Some small discrepancy are showed just in the end region close to the wall.

Learning Procedure for tuning

Details about the application of the Elastic Net

The data are organized in:

- $[Y]_{NX1}$ is the targeting function (N observations)
- $[X]_{NXM}$ is the Vandermonde matrix (N observations, M predictor functions)

The targeting function is : $\hat{\beta} = arg_{\beta} \min[|Y - X\beta|^2 + \lambda_1 |\beta| + \lambda_2 |\beta|^2]$

To find the model coefficients $\hat{\beta}$ the argument of the targeting function is derived for the case $\lambda_2 \neq 0$ and $\lambda_1 = 0$, obtaining:

$$\widehat{\boldsymbol{\beta}}_{en} = \left(\frac{\boldsymbol{X}^T \boldsymbol{X} + \lambda_2 \boldsymbol{I}}{1 + \lambda_2}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

The l_1 norm is then applied solving the equation for $\hat{\beta}_{en}$ iteratively and setting a threshold λ_1 to actuate the variable selection.

Learning Procedure for tuning

Details about the application of the Elastic Net

A mask matrix M consisting of 1 and 0 elements is defined to identify the surviving predictors

The reduced model Y_{en} can be estimated as: $Y_{en} = XM\widehat{\beta}_{en}$

The **best combination** of the penalization coefficients
$$(\lambda_1, \lambda_2)$$
 is identified throught the inspection of the **residual** and of the **overall number** of model coefficients:

$$R = ||Y_{en} - XM\widehat{\beta}_{en}||^2$$

Principal axes analysis

A principal axis analysis has been performed on the available experimental data set.

For consistency (respect of the tensor properties), the **deviatoric part of the Reynolds stress** tensor $[\hat{\tau}]$ and the **shear rate tensor** $[\hat{S}]$ were analyzed.

$$[\hat{\tau}] = \begin{bmatrix} \frac{1}{2} \left(\overline{u'u'} - \overline{v'v'} \right) & \overline{u'v'} \\ \overline{u'v'} & \frac{1}{2} \left(\overline{v'v'} - \overline{u'u'} \right) \end{bmatrix} \qquad [\hat{S}] = \begin{bmatrix} \frac{1}{2} \left(\frac{\partial \overline{U}}{\partial x} - \frac{\partial \overline{V}}{\partial y} \right) & \frac{1}{2} \left(\frac{\partial \overline{U}}{\partial y} + \frac{\partial \overline{V}}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial \overline{U}}{\partial y} + \frac{\partial \overline{V}}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial \overline{U}}{\partial y} - \frac{\partial \overline{U}}{\partial x} \right) \end{bmatrix}$$

In this way, the tensors have the same structure (trace null and symmetric) and **eigenvalues and eigenvectors** can be **compared**, being both of the form:

$$\begin{bmatrix} \Delta \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & -\lambda_1 \end{bmatrix} = \begin{bmatrix} \sqrt{A^2 + C^2} & 0 \\ 0 & -\sqrt{A^2 + C^2} \end{bmatrix} \qquad \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} \lambda_1 + A + C & -\lambda_1 - A + C \\ \lambda_1 + A - C & -\lambda_1 + A + C \end{bmatrix}$$

where: A the off-diagonal elements

C the positive diagonal term

- **The eigenvalue** $\lambda_{1,\tau}$ of the **deviatoric stress tensor** normalized with the turbulent kinetic energy has been computed.
- The displacement angle Δθ between the first eigenvector of the shear and the first of the stress tensor was also calculated.

Separated flow transition case

Data reduction for transition modelling (Algebraic)

- **The eigenvalue** $\lambda_{1,\tau}$ of the **deviatoric stress tensor** normalized with the turbulent kinetic energy has been computed.
- The displacement angle Δθ between the first eigenvector of the shear and the first of the stress tensor was also calculated.

By-pass flow transition case

Experimental setup

- Flat plate installed within adjustable endwalls to control the pressure gradient. Upstream, different turbulence generating grids are adopted to test different free-stream turbulence intensity.
 - Boundary layer transition is experimentally characterized for variable Reynolds numbers, free-stream turbulence intensities and adverse pressure gradients.

Measuring techniques

Fast-Response Particle Image Velocimetry & Laser Doppler Velocimetry

LASER SYSTEM:

- Double cavity Nd: Yag pulsed laser BLUESKY-QUANTEL CFR200
- Energy 2x100 mJ per pulse at 532 nm

CAMERA:

- Dantec High Sense digital camera
- 1280x1024 pixels cooled CCD matrix
- pixel dimension 6.7 μm
- 12 bit quantization
- Maximum frame rate in double frame mode: 3 kHz

DANTEC FlowLite 2D LDV

- 200 mW 532 nm and 200 mW 488 nm solid state lasers
- Optical probe characteristics:
 - •Diameter D=60 mm •Beam separation before expansion d= 38 mm
 - •Focal length
 - •Beam intersection angle
 - •Probe volume

d= 38 mm f=300 mm θ = 7.2° 0.09x0.09x1.4 mm

Accurate data base on transitional flows

• Laminar velocity profiles: Re is the only parameter affecting the velocity profile;

•BL amplifies streamwise fluctuations whereas normal to the wall fluctuations are dumped.

Ordered streaks in pre-transitional BL are responsible of non-null streamwise fluctuations;

